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Spatiotemporal stability of one-way open coupled nonlinear systems

Keiji Konishi, Hideki Kokame, and Kentaro Hirata
Department of Electrical and Electronic Systems, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531 Ja

~Received 20 April 2000!

The present paper investigates the spatiotemporal stability of homogeneous solutions in one-way open
coupled nonlinear systems. We show that theH` norm concept, which has been used as an important index in
the field of robust control theory, allows us to grasp the mechanism of spatial instability in coupled systems.
Spatial instability occurs only when theH` norm of the transfer function of each site is greater than 1. It is
shown that numerical simulations for one-way open coupled double scroll circuits are in good agreement with
our theoretical results.

PACS number~s!: 05.45.Ra, 05.45.Xt
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I. INTRODUCTION

Chaotic behavior and bifurcations in nonlinear syste
have been widely studied@1,2#. Several types of bifurcation
have been investigated from many points of view@3#. Bifur-
cations occur in continuous-time nonlinear systems whe
least one of the eigenvalues of the Jacobi matrix aroun
fixed point intersects the imaginary axis in the comp
plane. The bifurcation type depends on the crossing po
where the eigenvalues intersect the imaginary axis. Furt
more, the location of the eigenvalues is a unique criterion
classification of the fixed-point type. We may, therefore, r
sonably conclude that the fixed points of nonlinear syste
have been examined using the eigenvalues of Jacobi ma
Recently, the dynamics of spatially extended nonlinear s
tems has gained much attention in the field of nonlinear
ence. The dynamics of extended systems is too complic
to analyze the bifurcations and stability theoretically. Th
most studies on bifurcations and stability have used co
puter simulations instead of theoretical approaches.

Coupled map lattices~CMLs! have been particularly in
vestigated by many researchers, since they exhibit a w
variety of complex spatiotemporal behavior@4#. CMLs have
discrete time, discrete space, and continuous-state varia
The one-way open CML is well known as a typical op
flow model@5–8#. Kaneko discovered that spatial instabili
occurs in the one-way open CML@5#, and it has been exam
ined in detail by numerical simulation@6,7#. Yamaguchi in-
vestigated the instability and derived the bifurcation con
tions @9#. Konishi, Kokame, and Hirata examined th
mechanism of the instability by using theH` norm concept
of control theory@10#. Johnson, Lo¨cher, and Hunt found a
spatial period-doubling bifurcation in one-way open coup
diode resonator circuits@11#. However, it remains an ope
question how to clarity the mechanism of spatial instabi
in one-way open coupledcontinuous-timenonlinear systems

The present paper investigates the spatiotemporal stab
of a homogeneous solution in one-way open coup
continuous-time nonlinear systems. The spatiotemporal
bility has two criteria: the eigenvalues of the Jacobi mat
~i.e., the poles of a transfer function! and theH` norm of a
transfer function. In order to confirm our theoretical resu
we simulate the one-way open coupled double scroll circ
proposed in@12#.
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s

at
a

ts
r-
r
-
s
ix.
s-
i-
ed
s
-

e

es.

-

d

ity
d
a-

,
ts

II. ONE-WAY OPEN COUPLED NONLINEAR SYSTEMS

Let us consider a one-way open coupled nonlinear sys

ẋ~ i !5f„x~ i !…1b$x1~ i 21!2x1~ i !% ~ i 51,2,...,N!,
~2.1!

where x( i )ª@x1( i ) x2( i ) ¯ xn( i )#TPRn is the
n-dimensional system state of thei th lattice site andf:Rn

→Rn is an n-dimensional nonlinear function. The couplin
vector is b5@«0¯0#TPRn, where « is the coupling
strength. Figure 1 illustrates a one-way open coupled non
ear system. If the upper boundaryx1(0) is fixed atxf 1 , a
homogeneous solution of system~2.1! is given by

@x~1! x~2! ¯ x~N!#5@xf xf ¯ xf #, ~2.2!

where

xf5@xf 1 xf 2 ¯ xf n#TPRn. ~2.3!

The fixed pointxf of each site satisfiesf(xf)50. We shall
consider the spatiotemporal stability of homogenous solu
~2.2! in Sec. III.

III. STABILITY ANALYSIS

For simplicity, we focus on the dynamics of thei th lattice
site. Assume that the dynamics of the upper sites@i.e., the 1,
2, ..., (i 22)th lattice sites# has already converged to th
homogeneous solution@i.e., x(m)5xf , m51,2,...,(i 22)#. If
the (i 21)th andi th lattice site statesx( i 21) andx( i ) are in
the neighborhood of the fixed pointxf , then the dynamics of
the i th lattice site is governed by

ẏ~ i !5Ay~ i !1by1~ i 21!,

y1~ i !5cy~ i !, ~3.1!

FIG. 1. Block diagram of one-way open coupled nonline
system.
6383 ©2000 The American Physical Society
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where

y~ i !ªx~ i !2xf5@y1~ i ! y2~ i ! ¯ yn~ i !#T,

Aª

]f~x!

]x U
x5xf

1F2« 0 ¯ 0

0 0 ¯ 0

] ] � ]

0 0 ¯ 0

G , cª@1 0 ¯ 0#.

Note that the input and output of system~3.1! arey1( i 21)
andy1( i ), respectively. In the frequency domain, the inpu
output relation of system~3.1! can be described as

Yi~s!5G~s!Yi 21~s!, ~3.2!

where

Yi~s!ªL@y1~ i !#, Yi 21~s!ªL@y1~ i 21!#,

G~s!5N~s!/D~s!.

L denotes the Laplace transfer function.N(s) andD(s) are
polynomials. The derivation of Eq.~3.2! is given in the Ap-
pendix. If the (i 21)th lattice site is fixed atx( i 21)5xf ,
the i th lattice statex( i ) converges onxf only whenG(s) is
stable~i.e., all the eigenvalues of the system matrixA lie in
the open left half of the complex plane!. Figure 2 sketches
the block diagram of the coupled linear system~3.2!. Let us
assume that the (i 21)th lattice site is disturbed asx1( i
21)5xf 11y1( i 21), where the small disturbance is set
y1( i 21)5d i 21 sinvt. Then thei th lattice site is given by
x1( i )5xf 11y1( i ), wherey1( i )5d i sin(vt1f). The ampli-
tude ratio ofd i to d i 21 can be described as

d i

d i 21
5uG~ j v!u.

Suppose that all site states converge to the fixed pointxf .
The small sinusoidal disturbancedp sinvt is added only to
the pth lattice site; the influence of the disturbance can
observed asdq sin(vt1w) at theqth lattice site. The ampli-
tude ratio ofdq to dp is given by

dq

dp
5uG~ j v!uq2p, ~3.3!

where q.p. Now consider the following three case:~i!
uG( j v)u,1, ~ii ! uG( j v)u51, ~iii ! uG( j v)u.1. For case~i!,
the amplitude ratio decreases about exponentially withq
2p) @see Eq.~3.3!#. Therefore, if a sinusoidal signal wit
angular frequencyv is added to an upper lattice site, th
signal has little effect on lower sites. For case~iii !, the am-
plitude ratio increases about exponentially with (q2p). If a
tiny sinusoidal signal with angular frequencyv is added to

FIG. 2. Frequency domain block diagram around the homo
neous solution.
-

e

an upper site, the lower sites are significantly influenced
the signal. For case~ii !, the influence of the added signal
the upper sites is constant for all the sites.

For real systems with external noise or for numerical s
tems with round-off error on computers, we have to inves
gate spatial robustness for allvPR. In order to simplify the
discussions below we introduce theH` norm concept@13#.

Definition 1. Assume that a transfer functionG(s) is
stable. TheH` norm of the transfer functionG(s) is given
by @13#

iG~s!i`ª sup
vPR

uG~ j v!u.

Roughly speaking, theH` norm is the peak gain of the
bode diagram ofG(s). We note that theH` norm concept is
useful in defining spatial stability; hence, we give a simp
definition of the spatiotemporal stability of homogeneous
lution ~2.2! in one-way open coupled nonlinear systems.

Definition 2. The spatiotemporal stability of homogeneo
solution ~2.2! in one-way open coupled nonlinear syste
~2.1! is classified into the following three types:~i! If G(s) is
unstable~i.e., at least one eigenvalue of system matrixA is
in the open right half of the complex plane!, it is temporally
unstable~TU!. ~ii ! If G(s) is stable andiG(s)i`,1, it is
temporally spatially stable~TSS!. ~iii ! If G(s) is stable and
iG(s)i`.1, it is temporally stable and spatially unstab
~TSSU!.

This definition can be regarded as a continuous-time v
sion of the spatiotemporal stability introduced in Ref.@10#

If solution ~2.2! is TU, we can observe the oscillation fo
all sites. On the contrary, if it is TSS, no sites oscillate. If
is TSSU, some upper sites never oscillate. However,
noise at the upper sites induces oscillation in the lower si
This is because a tiny external noise or a round-off error
a computer at an upper site significantly disturbs the low
sites. Hence, the lower site statesx( i ) cannot keep staying on
xf .

In order to check the stability of homogeneous soluti
~2.2!, we have to estimate the eigenvalues of matrixA and
the H` norm of G(s) in advance. For coupled high
dimensional nonlinear systems, the analytical estimation
the eigenvalues and the norm is not easy; however, a s
ware package@14# allows us to obtain a numerical estimatio
of the eigenvalues and norm by simple commands. For
ample, the eigenvalues and the norm can be estimated b
commandsSPOL andNORMINF, respectively.

IV. ONE-WAY OPEN COUPLED DOUBLE SCROLL
CIRCUITS

We shall consider the one-way open coupled double sc
circuits proposed by Kapitaniak, Chua, and Zhong@12# as a
numerical example. They reported experimental observa
of hyperchaotic attractors in the coupled circuits. In our p
per, we investigate the spatiotemporal stability of the hom
geneous solution of the coupled circuits. The simple dim
sionless state equation of the circuits@12# can be written as

ẋ1~ i !52x1~ i !1x2~ i !1x3~ i !1«$x1~ i 21!2x1~ i !%,

ẋ2~ i !5a$x1~ i !2x2~ i !2h„x2~ i !…%, ~4.1!

-
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ẋ3~ i !52bx1~ i !,

for i 51,2,...,N. The nonlinear functionh„x2( i )… is

h~x2~ i !!5H bx2~ i !1a2b if x2~ i !>1

ax2~ i ! if ux2~ i !u<1

bx2~ i !2a1b if x2~ i !<21

.

FIG. 3. Bode diagram~a! and impulse response~b! of G(s) for
a56.5.

FIG. 4. Behavior of four sites fora56.5
Our analysis will be based on the dynamics~4.1!. Each cir-
cuit has three fixed points:

xf
~1 !5F 0

1l
2l

G , xf
~0!5F 0

0
0
G , xf

~2 !5F 0
2l
1l

G ,

wherel5(b2a)/(b11). Let us consider the stability of th
following homogeneous solution:

@x~1! x~2! ¯ x~N!#T5@xf
~1 ! xf

~1 !
¯ xf

~1 !#T.
~4.2!

The upper boundaryx1(0) is set at

x1~0!501hs~ t !,

where21<s(t)<11 is the uniform random noise andh is
the small noise level. The error dynamics around homo
neous solution~4.2! is

FIG. 5. Bode diagram~a! and impulse response~b! of G(s) for
a57.0.

FIG. 6. Trajectories in the phase plane fora57.0.
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F ẏ1~ i !
ẏ2~ i !
ẏ3~ i !

G5F 212« 1 1

a 2a~b11! 0

2b 0 0
G F y1~ i !

y2~ i !
y3~ i !

G
1F «

0
0
G y1~ i 21!,

y1~ i !5@1 0 0#F y1~ i !
y2~ i !
y3~ i !

G .

We note that this dynamics corresponds to system~3.1!. The
transfer function fromy1( i 21) to y1( i ) is given byG(s)
5N(s)/D(s). The polynomials areN(s)5«s21a«(1
1b)s and D(s)5s31r3s21r2s1r1 , where r15ab(1
1b), r25ab1b1a«(11b), r3511«1a(11b). The
Routh-Hurwitz stability test@15# allows us to obtain the nec
essary and sufficient condition forG(s) to be stable, that is

r1.0, r3.0, r2r32r1.0. ~4.3!

Our example employs the famous parameters@16#

a52 8
7 , b52 5

7 , b5141 2
7 .

The noise level at the upper boundary is set ash51022. The
coupling strength is fixed at«50.1. Now we shall check the
stability of homogeneous solution~4.2! for three cases: a
56.5, 7.0, and 7.5.

For the casea56.5, we derive the polynomialsN(s)
50.1s210.1857s and D(s)5s312.9571s219.8286s
126.5306. It is confirmed thatr1 , r2 , andr3 satisfy stabil-
ity condition ~4.3!. We estimateiG(s)i`50.6029 by the
software@14#, then we note that the solution is TSS fro
Definition 2. In order to confirm the stability obtained abov
we show the bode diagram and the impulse response ofG(s)
in Fig. 3. Since the peak gain ofG(s) is less than 1 and the
impulse response ofG(s) is stable, we see thatiG(s)i` is

FIG. 7. Trajectories in the phase plane fora57.5.
s

,

less than 1 andG(s) is stable. Figure 4 illustrates the beha
ior of the first, second, fourth, and eighth sites. The first s
x1(1) is disturbed by the noise of the upper boundary. T
influence of the disturbance decreases about exponent
with the site number. At the eighth site, we observe lit
influence of the upper boundary noise.

For the casea57.0, we deriveN(s)50.1s210.2s and
D(s)5s313.1s219.4857s128.5714. The coefficientsr1 ,
r2 , and r3 satisfy stability condition~4.3!. We estimate
iG(s)i`51.9094; then we see that the solution is TSS
Figure 5 shows the bode diagram and the impulse respo
of G(s). It is confirmed thatiG(s)i` is greater than 1 and
G(s) is stable. The trajectories in the phase plane for site
8, 11, 13, 30, and 50 are shown in Fig. 6. It can be seen
the tiny noise at the upper boundary significantly distu
lower sites, and causes oscillation in the lower sites.

For the casea57.5, the polynomials areN(s)50.1s2

10.2143s and D(s)5s313.2429s219.1429s130.6122.
The coefficientsr1 , r2 , andr3 do not satisfy stability con-
dition ~4.3!, and we see that the solution is TU. The traje
tories in the phase plane for the first, fifth, and eighth si
are shown in Fig. 7. As one can see, the upper edge site~i.e.,
the first site! oscillates with large amplitude, while we cann
observe an upper edge oscillation in the TSS and TSSU
gimes.

V. CONCLUSIONS

We have investigated the spatiotemporal stability of a
mogeneous solution in one-way open coupled continuo
time nonlinear systems. The main result obtained is as
lows: spatial instability in one-way open coupled continuou
time nonlinear systems is clarified by theH` norm of each
site transfer function. It should be noted that our theoreti
results do not depend on the system size~i.e., number of
sites! or the dimension of sites.

APPENDIX

The Laplace transform of system~3.1! is given by

sY~s!5AY ~s!1bYi 21~s!, ~A1a!

Yi~s!5cY~s!, ~A1b!

whereY(s)5L@y( i )#. Equation~A1a! can be described as

Y~s!5~sI2A!21bYi~s!. ~A2!

From Eqs. ~A1b! and ~A2!, we can obtain system~3.2!,
whereG(s)5c(sIn2A)21b.
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